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a b s t r a c t

This paper presents a novel methodology for multi-scale and multi-type spatial data integra-

tion in support of insect pest risk/vulnerability assessment in the contiguous United States.

Probability of gypsy moth (Lymantria dispar L.) establishment is used as a case study. A neural

network facilitates the integration of variables representing dynamic anthropogenic interac-

tion and ecological characteristics. Neural network model (back-propagation network [BPN])

results are compared to logistic regression and multi-criteria evaluation via weighted linear

combination, using the receiver operating characteristic area under the curve (AUC) and

a simple threshold assessment. The BPN provided the most accurate infestation-forecast

predictions producing an AUC of 0.93, followed by multi-criteria evaluation (AUC = 0.92) and
nthropogenic

eural network

isk

nvasive species

logistic regression (AUC = 0.86) when independently validating using post model infesta-

tion data. Results suggest that BPN can provide valuable insight into factors contributing to

introduction for invasive species whose propagation and establishment requirements are

not fully understood. The integration of anthropogenic and ecological variables allowed pro-

duction of an accurate risk model and provided insight into the impact of human activities.

$138 billion per annum; $2.1 billion of which is attributed to
. Introduction

pecies distribution models (SDMs) are playing an ever-
ncreasing role in understanding the current and potential
uture distribution of flora and fauna. SDMs relate plant
nd animal distribution to ecological variables that con-
ribute to their persistence and/or propagation (Guisan and
immermann, 2000). We present a novel methodology for
ntegrating ecological and anthropogenic data in distribution
odels to support insect pest risk assessment in the contigu-

us United States (US). The gypsy moth (Lymantria dispar L.), an
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invasive species in the US, is used as a case study to compare
the performance of expert, parametric, and neural network
models for integrative risk assessment.

There are approximately 50,000 invasive species in the
United States (Pimentel et al., 1999) collectively affecting every
state and territory (Bergman et al., 2000). Pimentel et al. (1999)
estimate total invasive species damage to be approximately
Geography, 5500 Campanile Dr., San Diego, CA 92182-4493, USA.

forest pests such as the gypsy moth. The gypsy moth alone
has defoliated millions of hectares of valuable timber species
(Gerardi and Grimm, 1979) causing millions of dollars of dam-

mailto:Lippitt@rohan.sdsu.edu
dx.doi.org/10.1016/j.ecolmodel.2007.08.005
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Table 1 – Most common gypsy moth hosts (listed in
descending abundance) in the contiguous United States
(adapted from Liebhold et al., 1997a,b)

Common name Scientific name Total basal
area

100 million
ft/acre

White oak Quercus alba 14.3
Sweetgum Liquidambar styraciflua 11.6
Quaking aspen Populus tremuloides 10.1
Northern red oak Quercus rubra 9.62
Black oak Quercus velutina 7.31
Chestnut oak Quercus prinus 6.84
Post oak Quercus stellata 5.47
Water oak Quercus nigra 4.34
Paper birch Betula papyrifera 3.81
Southern red oak Quercus falcata 3.75
Scarlet oak Quercus coccinea 3.31
American basswood Tilia americana 2.41
Western larch Larix occidentalis 2.40
Laurel oak Quercus laurifolia 1.94
Bigtooth aspen Populus grandidentata 1.90
Tanoak Lithocarpus densiflorus 1.64
Willow oak Quercus phellos 1.49
California red oak Quercus kelloggii 1.45
340 e c o l o g i c a l m o d e l l

age each year (Leuschner et al., 1996) with a host of ecological
problems (Gottschalk, 1993). Every year, more than 250,000 ha
of US forest are treated in an attempt to minimize gypsy moth
defoliation impacts (USDA Forest Service, 1992) and there is
concern that it may be spreading to areas previously believed
to be uninhabitable (Allen et al., 1993). If uncontrolled, it is
likely the gypsy moth will extend its range to most of the con-
tiguous US and southern Canada (Liebhold et al., 1992; Sharov
et al., 1997).

The United States Department of Agriculture’s Animal and
Plant Health Inspection Service (APHIS), the agency charged
with the detection and mitigation of gypsy moth, requires
an improved decision support tool to aid the prediction
of gypsy moth introduction, establishment, and spread for
the contiguous United States. Current gypsy moth decision
support consists of non-spatial, unsystematic, estimations
by regional managers (USDA, 2001). Geographic Information
Science (GIScience) and technology offer the capability to char-
acterize insect infestation probability in a spatially explicit,
accurate, and replicable method; a function vital to managers
charged with the efficient distribution of limited detection and
mitigation resources over large spatial extents (Byers et al.,
2002; Stohlgren and Schnase, 2006).

Modeling gypsy moth risk with commonly used tech-
niques, however, presents two challenges: ecological variables
typically included in SDMs do not account for anthro-
pogenic impacts on the response variable; and methods
traditionally used to model spatial variables require a priori
definition of variable relationships and/or violate basic statis-
tical assumptions of independence and/or linearity (Gahegan,
2003). Machine learning (e.g., neural network) methods allow
the characterization of models containing non-linear relation-
ships among, and between predictor variables without the
explicit definition of those relationships (Foody, 1995; Lek et
al., 1996; Lek and Guegan, 1999).

This research predicts gypsy moth infestation risk in non-
infested counties of the contiguous US to: (1) assess the
capability of an automated artificial neural network (ANN) to
integrate environmental and anthropogenic variables for pre-
dictive modeling in comparison to other commonly employed
SDM techniques; and (2) improve upon previously developed
gypsy moth infestation risk schemes through the incorpora-
tion of anthropogenic variables.

2. Background

2.1. Gypsy moth ecology

Since its introduction in Massachusetts (i.e., 1868 or 1869)
the gypsy moth has expanded its range to include the entire
northeastern portion of the US including portions of Virginia,
West Virginia, Ohio, Indiana, North Carolina and Michigan
(Liebhold et al., 1989, 1996). Gypsy moth still only occupies 23%
of the estimated 607 million ha in its potential range (US only)
(Liebhold et al., 1997a; Morin et al., 2005). One of the primary

reasons for the gypsy moth’s successful propagation is that
it is known to utilize nearly 300 tree species as primary hosts
(Leonard, 1981; Liebhold et al., 1995). Its ability to establish and
persist, however, varies among different tree species (Herrick
Eastern hophornbeam Ostrya virginiana 1.26
Canyon live oak Quercus chrysolepis 1.14

and Gasner, 1986). Table 1 provides a summary of predom-
inant gypsy moth host species. The gypsy moth’s preferred
host species include many of the most prevalent deciduous
tree species in the US. Several of the states containing the
highest amount of highly susceptible forest are not currently
infested (Liebhold et al., 1997b).

Female Lymantria dispar (L), the species of gypsy moth found
in the U.S., are not flight capable, thus limiting their natural
migration to <1–2 km per annum. However, potential egg mass
substrate vectors include vehicles, campers, trailers, boats,
lawn furniture, swing sets, barbecue grills, tarps, etc. (USDA,
2001). When people transport substrate materials, either dur-
ing household moves or vacations, they may carry gypsy
moths either in the pupal or egg stage. Therefore, movement of
people, vehicles, and household goods from infested areas to
non-infested areas is the principal mechanism for long-range
dispersal of the gypsy moth (USDA, 2001). The characteriza-
tion of gypsy moth introduction probability and subsequent
calculation of infestation risk, therefore requires the incor-
poration of human (i.e., probable gypsy moth) movement
data.

2.2. Species distribution modeling

SDMs relate species distribution observations to environmen-
tal predictor variables (i.e., gradients) based on statistically
or theoretically-derived response functions (Guisan and
Zimmermann, 2000). Austin (1980, 2002) defined three types
of environmental gradients (i.e., variables) for the prediction

of species distribution; resource, direct, and indirect gradients.
Resource gradients address matter and energy consumed
by plants or animals (e.g., nutrients, water, light for plants,
food). Direct gradients are environmental parameters that
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ave physiological importance, but are not consumed (e.g.,
emperature, pH). Indirect gradients are variables that have
o direct physiological relevance for a species’ persistence
nd/or propagation (e.g., slope, aspect, elevation, topographic
osition, habitat type, geology), and are often descriptive of
everal direct and/or resource gradients. Anthropogenic activ-
ties influence plant and animal species in ways that have
hysiological effects (e.g., harvest, transportation) and in ways
hat do not (e.g., disturbance, habitat preservation). Anthro-
ogenic variables, therefore, can be described as direct or

ndirect gradients, under the Austin (1980, 2002) classifica-
ion.

SDMs are often developed for the estimation of environ-
ental risk (e.g., Araujo and Williams, 2000; Araujo et al., 2002;

errier, 2002; Vander Zanden et al., 2004), a variable frequently
nfluenced or directly caused by anthropogenic activities (e.g.,
limate change, development, resource extraction, invasive
pecies, competition). The primary goal of coarse scale (i.e.,
ational-continental) modeling of gypsy moth infestation risk,
o date, has been to gain a better understanding of host species
bundance in order to estimate the total area of potential
nfestation in the presence of an introduction. For example,
eibhold et al. (1997b, p. 20) define susceptibility (i.e., risk) as
the probability or frequency of defoliation given an estab-
ished gypsy moth population”. Accordingly, several studies
ave mapped host abundance in an attempt to estimate the
otal area at risk to infestation (e.g., Liebhold et al., 1997b;
orin et al., 2005). Mapping host abundance as a proxy for

isk, however, ignores current ecological theory on gypsy moth
ovement and subsequently overestimates the area at risk

o gypsy moth infestation, which could result in overspend-
ng with respect to detection and mitigation strategies (Morin
t al., 2005). The calculation of gypsy moth infestation risk
hus requires the inclusion of anthropogenic information on
ntroduction probability.

A limited number of studies have incorporated anthro-
ogenic variables into SDMs (e.g., Austin et al., 1996 [building
ensity, road length], Osborne et al., 2001 [disturbance],
umming, 2002 [political regions], Suárez-Seoane et al., 2002

roads, towns]). Anthropogenic variables influence the distri-
ution of species (Austin et al., 1996; Osborne et al., 2001) and
herefore must be considered for inclusion in SDMs. Species-
nthropogenic variable relationships, however, are likely to be
on-linear and to exhibit strong interaction with some ecolog-

cal variables. The incorporation of interaction and non-linear
ariables into SDMs will require the use of nonparamet-
ic modeling techniques (Ozesmi et al., 2006). The inclusion
f anthropogenic variables and application of modern non-
arametric statistical techniques represent rudimentary steps
oward the development of statistically rigorous models
ooted in sound ecological theory, which remains the funda-

ental benchmark for the discipline of species distribution
odeling (Austin, 2002; Guisan and Thuiller, 2005; Guisan et

l., 2006).

.3. Modeling techniques
ecision support (i.e., resource allocation optimization)
odeling has been predominantly limited to deductive

echniques based on expert opinion (expert systems, e.g.,
0 ( 2 0 0 8 ) 339–350 341

multi-criteria evaluation) requiring a priori understanding
of predictor/response variable relationships (Eastman et al.,
1993). Inductive (i.e. empirical) techniques (e.g., logistic regres-
sion), however, offer the ability to model phenomena for
which predictor–response variable relationships are not fully
understood (Guisan and Zimmermann, 2000). Non-linear rela-
tionships and inherent spatial dependence within, among,
and between predictor variables, however, violate assump-
tions of conventional statistical theory and have limited the
accuracy and predictive power of parametric empirical mod-
els (Franklin, 1995; Guisan and Zimmermann, 2000). Artificial
neural networks (e.g., BPN) offer the benefits of empiri-
cal modeling without adherence to parametric assumptions
(Foody, 1995; Foody and Arora, 1997); potentially allowing for
an improved empirical model when compared with meth-
ods rooted in traditional statistical theory (Pijanowski et al.,
2002).

Studies comparing neural network and conventional (i.e.,
parametric) SDMs using the same dataset have been lim-
ited (Guisan and Zimmermann, 2000). Segurado and Araujo
(2004) modeled amphibians and reptiles in Portugal using
several techniques (e.g., neural networks, generalized lin-
ear models, generalized additive models) and found neural
networks to consistently produce more accurate models, par-
ticularly when modeling high tolerance (i.e., low marginality)
species like the gypsy moth. Mastrorillo et al. (1997) com-
pared discriminant analysis and BPN to model several fish
species’ distribution and found BPN to produce 20% improved
prediction accuracies when variables exhibited non-linear
relationships. Manel et al. (1999) compared discriminant anal-
ysis, logistic regression, and a BPN to model the distribution
of a Himalayan river bird and found the BPN to produce
more accurate (i.e., overall map accuracy) predictions than
logistic regression or discriminant analysis, but logistic regres-
sion outperformed BPN when validated using the AUC. Olden
and Jackson (2001) compared BPN to logistic regression to
model nine fish species using simulated Gaussian and linear
response functions and BPN outperformed logistic regression
by an average of 5.65% (overall map accuracy). They found
BPN to have broad applicability to the study of ecological
relationships for both exploratory and predictive purposes,
particularly when species response curves are non-linear
(Olden and Jackson, 2001).

2.3.1. Multi-criteria evaluation
Fuzzy multi-criteria evaluation (MCE) functions through a
simple weighted linear combination of variables, where inde-
pendent variable values indicate probability of occurrence of
the modeled phenomenon to produce a map representing
suitability of presence (Eastman et al., 1995). MCE allows
for complete user control in that variable weights and rela-
tionships are predefined by the analyst. This facilitates the
incorporation of ecological theory by forcing the explicit def-
inition of variable weights and relationships, and allows
modeling in the absence of presence/absence representations
of species occurrences. However, because MCE requires a

priori definition of variable weights and relationships, a thor-
ough understanding of environment-species relationships is
necessary for the sound prediction of distribution (Austin,
2002).
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Fig. 1 – Conceptual model of the multi-layer perceptron
342 e c o l o g i c a l m o d e l l

Methods have been developed to aid the identification of
optimal variable weights, the most popular of which is the
analytical hierarchy process (AHP) developed by Saaty (1980,
1987). The weights generated by the AHP are produced by
means of the principal eigenvector of a pairwise matrix com-
paring the relative importance of input variables (Saaty, 1987;
Eastman et al., 1995). The most common application of MCE
techniques has been land allocation optimization for regional
planning purposes (e.g., Lin et al., 1997; Corcoran et al., 1997;
Antonie et al., 1997) though there are several examples of risk
modeling implementations (e.g., Tkach and Simonvic, 1997;
Duijm and Markert, 2002; Fuller et al., 2002). While MCE has
not been applied to SDMs (i.e., realized distribution) it has been
frequently applied to habitat suitability models (i.e., potential
distribution) (e.g., Store and Jokimaki, 2003). It can, however, be
argued that informal MCE is conducted each time a manager
attempts to optimize resource distribution efficiency: factors
known to contribute to gypsy moth presence are considered
based on the experience of the manager and areas constitut-
ing the highest risk are identified. MCE is, in its simplest terms,
a formalization and subsequent optimization of the process
managers have typically employed.

2.3.2. Logistic regression
Logistic regression is an empirical modeling technique used
for prediction of a binary response variable (e.g., species pres-
ence/absence). Several parameter optimization techniques
are available, the most popular of which is the maximum
likelihood estimation procedure (Clark and Hosking, 1986;
Eastman, 2006). Logistic regression assumes that outcomes are
mutually exclusive and exhaustive, the dependent-predictor
variable relationship is logistic, samples are random, and
residual errors are independent (Eastman, 2006). Despite the
frequent violation of these underlying assumptions, logistic
regression has been the predominant method for probabilis-
tic modeling of species distribution (Franklin, 1995) but has
seen limited application for the prediction of gypsy moth dis-
tribution.

Liebhold et al. (1998) and Gribko et al. (1995) used logistic
regression fit via maximum likelihood estimation to predict
forest stand-level gypsy moth defoliation in Massachusetts.
Gribko et al. (1995) found logistic regression based on trap
counts to produce more realistic models to predict defoli-
ation then three-dimensional Kriging of known defoliation.
Liebhold et al. (1998) note, however, that logistic regression
models offer no improvement over simple egg mass thresh-
old methods (i.e., number of egg masses equals severity of
defoliation).

2.3.3. Back propagation neural network
Multi-layer perceptrons trained using a back-propagation
procedure (BPNs) are a form of feed-forward artificial neu-
ral network calibrated using a back propagation algorithm
(Rumelhart et al., 1986). Based on a recursive learning proce-
dure, the algorithm uses a gradient decent search to minimize
model calibration error (Kanellopoulos and Wilkinson, 1997).

BPNs have three primary components, an input layer, an out-
put layer, and one or more hidden layers; each composed
of a user-defined number of neurons. Output neurons rep-
resent the classes specified by the calibration data. Input
neural network used in these analyses.

variables and hidden layer neurons are randomly weighted
and assigned membership to an output neuron. This process is
repeated and the weights resulting in the lowest testing error
are retained. Repeated iteratively, weights reach an approx-
imately optimal solution for the partition of input variables
into the specified output classes (i.e., presence-absence). Fig. 1
provides a conceptual model of the BPN used for the analyses
presented here.

Unlike logistic regression, BPNs operate without paramet-
ric assumptions. Subsequently, they allow the characteri-
zation of models containing non-linear relationships and
inherent dependence within, among, and between predictor
variables without the explicit definition of those relationships
(Lek and Guegan, 1999). This advantage can allow improved
prediction accuracy compared to parametric techniques such
as logistic regression (Manel et al., 1999). Neural networks like
BPN represent a powerful, yet under explored, tool for integra-
tion into SDMs (but see Colasanti, 1991; Edwards and Morse,
1995; Fitzgerald and Lees, 1992, 1994; Lek and Guegan, 1999
and Guisan and Zimmermann, 2000).

BPNs are the most widely-used and, subsequently, the
most extensively explored type of neural network algorithm
in GIScience (Foody, 1995; Foody and Arora, 1997) but have
seen limited application to species distribution modeling
(Franklin, 1995; Guisan and Zimmermann, 2000). Typically
used for the classification of remotely sensed data (e.g., Foody
and Arora, 1997; Gopal and Woodcock, 1996; Foody, 1995),
BPNs have been applied to SDMs (e.g., Fitzgerald and Lees,
1992, 1994; Lek et al., 1996; Mastrorillo et al., 1997; Lek and
Guegan, 1999; Manel et al., 1999; Tourenq et al., 1999). BPNs
have seen limited application to model the risk of invasive
species (but see Vander Zanden et al., 2004). While several

types of artificial neural networks likely have potential for
application in empirical modeling, BPNs have been the pri-
mary type of algorithm implemented, likely due to software
availability.
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Table 2 – Descriptions of all modeled variables used in this study

Variable Prediction association Source Data type Data range Model
inclusion

Airport density Introduction probability U.S. Bureau of Transportation
Statistics

Point – –

Distance from quarantined
counties

Introduction probability USDA APHIS Continuous 0–2,567,769 MCE

Household movement from
defoliated counties

Introduction probability U.S. Census Bureau Continuous 0–680.00 –

Household
movement—quarantined
counties

Introduction probability U.S. Census Bureau Continuous 0–242,652 MCE, LR, BPN

Infestation history Introduction probability USDA APHIS National
Agricultural Pest Information
System

Categorical 0–10 MCE

National and state parks Introduction probability USGS Polygon – LR, BPN
Percent of population

emigrated from defoliated
counties

Introduction probability U.S. Census
Bureau/LandScan

Continuous 0–0.45 LR

Population density Introduction probability U.S. Department of Energy
(LGPD, 2000)

Continuous 0–6,528 MCE, LR, BPN

Rail density Introduction probability U.S. Bureau of Transportation
Statistics

Line – –

Road accessibility Introduction probability USGS Line – MCE, LR, BPN
Host susceptibility Establishment potential USDA (Morin et al., 2005) Continuous 0–37.59 LR, BPN
Percent canopy cover Establishment potential TREES (DeFries et al., 2000) Continuous 0–75.74 LR, BPN
Percent coniferous canopy

cover
Establishment potential TREES (DeFries et al., 2000) Continuous 0–72.93 MCE

Percent deciduous canopy Establishment potential TREES (DeFries et al., 2000) Continuous 0–76. 97 MCE, LR, BPN
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Analy

. Methods

.1. Data

nitial data selection was based on a decision support frame-
ork currently used by the USDA to aid the distribution
f pheromone sampling traps (USDA, 2001). Variables were
elected in an attempt to predict the two requirements for
ypsy moth population establishment: introduction proba-
ility and/or establishment potential given an introduction.
able 2 presents a summary of the variables assessed for
nclusion in all models examined in this study. To provide
nformation on the accessibility of suitable host material to
anthropogenic) introduction, the variables road accessibil-
ty, airport density, and rail density were included. Because
arks constitute a distinctive risk due to high numbers of
isitors carrying potential gypsy moth egg mass substrate
e.g., campers, firewood, boats), the variables national and
tate parks were included. To account for introduction due
o household migrations, the variables household movement
rom quarantined counties, percentage of population emi-
rated from quarantined counties, and movement from (gypsy
oth) defoliated counties were included. To account for intro-

uctions related to daily activities (e.g., shipping of firewood,

uilding materials), the variable distance from quarantined
ounties was included. To provide information on gypsy moth
ost availability and subsequent establishment potential, the
ariable host susceptibility was included. To account for
tial Climate
rvice, 2004)

Continuous −25.66–12.81 –

species not included in the calculation of host susceptibility,
which describes only “high preference” host species (Liebhold
et al., 1997b), the variables percent tree canopy cover, percent
deciduous tree canopy cover, percent coniferous canopy cover
were included. Lastly, to account for gypsy moth diapause
temperature requirements (see Allen et al., 1993 for a full
description), minimum January temperature was included.

Calibration/validation data were provided through a 14 year
record of gypsy moth pheromone trap counts per county for
non-infested portions of the United States. Empirical mod-
els (logistic regression and BPN) were calibrated using data
from 1991 to 2000 and validated using data from 2001 to 2004.
Calibration years were selected to correspond to 2000 cen-
sus migration data. The remainder of available reference data
was used for validation. Four years (2001–2004) is longer than
the gypsy moth establishment guidelines offered by the USDA
(USDA, 2001).

For the calibration dataset, “Presence” was defined as five
or more moths captured, in a given county, in 4 or more years
between 1991 and 2000 (USDA APHIS). “Absence” was defined
as counties in which traps were distributed but gypsy moth
presence has never been recorded between 1991 and 2000. A
total of 1695 training samples, 1486 absence and 209 presence,
resulted from reference data filtering based on these criteria.
For the validation dataset, “Presence” was defined as five or

more moths captured in any year (2001–2004) and “Absence”
was defined as zero moths captured in trapped counties. Vali-
dation data filtering resulted in 962 samples; 884 absence and
78 presence. Calibration and validation data filtering criteria
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were reached through a great deal of consultation with USDA
APHIS entomologists, in order to reflect the model’s ultimate
purpose, risk allocation.

Host susceptibility, a data layer estimating the total basal
area/ha of “high” preference (Liebhold et al., 1997b) gypsy
moth host species, was created by Morin et al. (2005) by
kriging United States Forest Service (USFS) forest inventory
analysis (FIA) plot data and limiting their presence to forest
classes as indicated by the United States Geological Survey’s
National Land Cover Dataset (DeFries et al., 2000). All accessi-
bility (i.e., road, airport and railroad) and parks (i.e., national
and state parks) variables were calculated by placing a 1 km
buffer around the target feature (to provide otherwise one-
dimensional features area) and dividing the total buffer area
within the county by the total area of the county. All other
variables were aggregated through the averaging of all values
within a given county.

3.2. Models

We compare three distinct types of distribution models in
terms of their ability forecast gypsy moth establishment risk
based on the sweet of environmental and anthropogenic
variables described above: expert system (i.e., MCE), paramet-
ric (i.e., logistic regression), and non-parametric (i.e., BPN).
Each of these models has an appropriate variable selec-
tion method associated with it: expert knowledge, statistical
significance, and iterative selection based on training accu-
racy, respectively. Similarly, while logistic regression and
BPN are empirical models and require training data, MCE
requires no training data. Subsequently, in order to assess
each model under best practice conditions, variable selec-
tion and model calibration were conducted on an individual
basis.

3.2.1. Multi-criteria evaluation
The MCE model was constructed using a weighted linear com-
bination calibrated using the AHP (Saaty, 1980; Saaty, 1987).
The variables selected through literature review and expert
consultation include: household movement from quarantined
counties, percent deciduous canopy cover, percent coniferous
canopy cover, road accessibility, population density, infesta-
tion history from 1990 to 2000, and distance from infested
areas. AHP requires the creation of a square reciprocal matrix
defining the relative importance of each variable to each other
using a 9-point rating scale ranging from 1 (equal importance)
to 9 (strongly more important) with ratings of less importance
being expressed as the reciprocal (i.e., strongly less important
would be expressed as 1/9). By definition the diagonal entries
are all equal to 1 (variables are equally important when com-
pared to themselves) and the rating in any position i,j will be
the reciprocal of that in position j,i. The Principal Eigenvec-
tor of this matrix then yields the importance weights of the
variables (Table 3).

An important source of feedback in the AHP is the eval-
uation of the Consistency Ratio which expresses the degree

to which the ratings form a consistent set of relationships.
Saaty (1977) has shown that for a perfectly consistent set of
ratings, the Principal Eigenvalue will be equal to the order of
the matrix. This leads to a simple measure of departure from
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Table 4 – Description of the factors included in the multi-criteria evaluation model

Factors Function A B C D Weight

Migration from infested Sigmoid increasing 0 100 0.0865
Distance from quarantine Sigmoid increasing 0 100 0.0358
Percentage coniferous canopy cover Sigmoid symmetrical 54 449 449 56000 0.2666
Percentage deciduous canopy cover Sigmoid increasing 0 Max 0.3656
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Infestation history 1990–2000 Sigmoid Increasing
Road accessibility Direct
Population density Sigmoid decreasing

his ideal condition known as the Consistency index:

I = �max − n

n − 1
(1)

here �max is the Principle Eigenvalue of the reciprocal matrix
nd n is the order of the ratings matrix. The Consistency Ratio
CR) is then the ratio of that index to the average CI for a
arge set of randomly generated ratings. Saaty (1977) suggested
hat when the CR exceeds 0.1 the ratings are inconsistent and
hould be re-generated. The AHP Consistency Ratio in this
tudy was 0.08 indicating that the weights of variables were
etermined from an acceptably consistent set of ratings.

Table 4 provides a complete description of variable prepara-
ion. Variables were prepared and weighted via AHP based on
nformation from the Gypsy Moth Manual (USDA, 2001), sup-
orting literature (e.g., Leonard, 1981; Carter et al., 1994; Shaub
t al., 1995; Sharov, 1996; Nealis et al., 2001) and advice from
SDA APHIS and USDA Forest Service research entomologists.

.2.2. Logistic regression
sing logistic regression, presence-absence reference coun-

ies served as the dependent variable and indicator variables
rovided independent variables. Through a stepwise method,
he following variables were selected for inclusion in the

odel at p ≤ 0.05: host susceptibility, household move-
ent from quarantined counties, national parks, percentage

eciduous canopy cover, percentage canopy cover, road acces-
ibility, population density, and percentage of population
migrated from quarantined counties. All available training
ata (i.e., 209 presence and 1486 absence) were used for cali-
ration.

.2.3. Back-propagation neural network
hrough an iterative selection process, the following variables
ere selected: host susceptibility, household movement from
uarantined counties, national parks, percentage deciduous
anopy cover, percentage canopy cover, road accessibility, and
opulation density (Fig. 1). Since traditional automated step-
ise methods based on significance testing are based on

n assumption of normality and could subsequently reject
xplanatory (non-normal) variables as insignificant, a sub-
ective iterative selection method was adopted. All possible
ariable combinations were modeled and the suite of vari-
bles producing the lowest root mean square testing error (i.e.,
raining accuracy) was retained.
BPN requires the specification of several parameters,
rguably the most influential of which is the learning rate
Kavzoglu and Mather, 2003). This parameter determines the

aximum weight adjustment at each iteration. The imple-
0 14 0.0791
0.0550

0 2000 0.1114

mentation of BPN used for these analyses allows for the
automatic adjustment of the learning rate based on root
mean square error fluctuations over several iterations. The
automatic calculation of learning rate allows for a reason-
able approximation of an optimal setting while reducing the
amount of trial and error necessary for parameter selection
and the likelihood of overtraining. A single hidden layer with
four nodes was used. A momentum factor of 0.5 and sigmoid
constant of 1.0 were found to be optimal through a trial and
error procedure. All available training information was used
to create equally proportioned training and testing samples
(Tourenq et al., 1999); 208 samples for training and 208 sam-
ples for testing; 104 for each presence and absence. To allow
the network to ‘self-check’ at each iteration, training data pre-
sented to the network are sampled into 50% training, and 50%
testing, with presence an absence in equal proportion. These
parameters allowed for significant convergence after 10,000
iterations.

3.3. Model assessment

Spatially explicit models of gypsy moth infestation risk were
validated using presence/absence information from 2001 to
2004, where presence was defined as five or more moths
captured in any given year, based on two criteria: AUC and
a simple threshold assessment. AUC provides a threshold
and prevalence independent measure of a model’s predic-
tive power which permits model validation independent of
distortions and potential bias introduced by dichotomization
(Fielding and Bell, 1997). AUC requires the rank ordering of
a suitability image and thresholding of that rank ordered
image at a user specified number of intervals to produce a
boolean map that is then compared to the boolean map of true
presence (Eastman, 2006; Pontius and Schneider, 2001). True
positives and false positives are plotted; the area between the
plotted line and random (i.e., equal true and false positives), as
a proportion of the total area above random, is the area under
the curve AUC statistic. The (AUC) was calculated as:

AUC =
n∑

i=1

[xi+1 − Xi]x

[
yi + (yi+1 − yi)

2

]
(2)

where xi is the rate of false positives for threshold i, yi is the
rate of true positives for threshold i, and n + 1 is the number of
thresholds. One hundred and one thresholds were used (i.e.,

n = 100) for these analyses.

Simple threshold assessment refers to a similar process
excepting the rank ordering of presence suitability values
prior to thresholding; eliminating potential artifacts associ-
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Fig. 2 – Model projections and efficiency for (a) neural network, (b) multi-criteria evaluation, and (c) logistic regression.
Efficiency graphs compare percentage of known infestation detected by the model to the number of counties identified as

infested by the model.

ated with the rank order process. Rank ordering can lead to

pixels of the same suitability (i.e., risk) value being calculated
in different thresholds; potentially introducing bias into both
ROC curves and AUC. Raw value (0–1) models were thresh-
olded at 0.05 intervals to determine true and false positives
and to ultimately allow the identification of an approximate

threshold of maximum efficiency for each model. Maximum
efficiency is calculated as:

Maximum efficiency = Max
i=20

[xi − yi] (3)
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Fig. 3 – Relative operating characteristics for back
propagation network, multi-criteria evaluation, and logistic
regression compared to relative operating characteristic for
e c o l o g i c a l m o d e l l i n

here xi is the percentage of true positives at threshold i, and

i is the percentage of false positives at threshold i.

. Results and discussion

f the three models assessed, BPN provided the most accu-
ate predictions based on independent forecast validation
sing 2001–2004 trap counts producing a AUC of 0.93, fol-

owed by MCE (AUC = 0.92) and logistic regression (AUC = 0.86)
Fig. 2). BPN, with optimized parameters and a training accu-
acy of 94.2%, produced a model with a maximum efficiency
f 74.5%. Maximum efficiency was realized at a threshold of
.65, correctly identifying 92.7% of infestations (424 counties
r 769,034 km2 total) from 2001 to 2004 while falsely identify-

ng 18.2% of areas known to be non-infested. Fig. 2a describes
mission errors, commission errors, and efficiency for the BPN
odel in terms of the number of counties identified as a trap-

ing priority.
MCE produced a model (Fig. 2b) with a maximum efficiency

f 64.6%. Maximum efficiency was realized at a threshold of
.55, correctly identifying 69.2% of infestations (408 counties
r 556,230 km2 total) from 2001 to 2004 while falsely identify-

ng 13.2% of areas known to be non-infested. Fig. 2b describes
mission errors, commission errors, and efficiency for the MCE
odel in terms of the number of counties identified for trap-

ing priority.
Logistic regression produced the following model (Fig. 2c):

ogit(presence/absence) = −4.56 − 0.12A + 0.00B − 1.75C

+0.08D + 0.03E + 3.29F + 0.01G

−0.25H (4)

here A is host susceptibility, B is household movement from
uarantined counties, C is national parks, D is percentage
eciduous canopy cover, E is percentage canopy cover, F is
oad accessibility, G is population density, and H is the per-
entage of population emigrated from quarantined counties.
aximum efficiency (48.73%) was realized at a threshold of

.4, correctly identifying 69.2% of infestations (468 counties or
70,997 km2 total) from 2001 to 2004 while identifying 20.47%
f areas known to be non-infested. Fig. 2c describes omis-
ion errors, commission errors, and efficiency for the logistic
egression model in terms of the number of counties identified
s a trapping priority.

MCE, logistic regression, BPN, and persistence (i.e., if the
rediction were persistence at year 2000 locations) ROC curves
re summarized in Fig. 3. Note that the BPN curve rises (i.e.,
ncrease in true positives) quickly, in comparison to the MCE
urve, but levels off, while the MCE curve rises to 100%. This
ndicates that, in comparison to BPN, MCE systematically over-
redicts presence below the 90% true positive threshold. MCE

s therefore the modeling method of choice when unlimited
rapping resources are available, but BPN produces the most
ccurate sampling scheme to trap up to 90% of potential infes-

ations.

The inability of the BPN model to accurately characterize
ypsy moth distribution beyond the 90th percentile suggests
hat training data do not exhaustively characterize the range
persistence.

of potential host sites; suggesting that there are potential
host ranges that are not being sampled. The ability of MCE
to characterize risk beyond the 90th percentile suggests that
the variables included contain the information necessary for
the prediction of infestation beyond the 90th percentile and
subsequently reinforce the suggestion that the training data
may not fully capture the variance of the gypsy moth poten-
tial infestation range. The gypsy moth’s demonstrated ability
to adapt to less than ideal environments (USDA, 2001) may
explain the training data limitation; trap distribution is based
on current understanding of potential gypsy moth range,
however, gypsy moth adaptation capabilities are not fully doc-
umented or understood and there is potential for gypsy moth
to adapt to areas outside its commonly accepted range (Allen
et al., 1993). In empirical models (e.g., BPN) it is assumed
that sample data characterize the variance of the population,
which APHIS trap count data may not.

Despite being calculated in very different ways, the three
models exhibit large areas of location agreement (e.g., Pacific
Northwest and Appalachia). Areas consistently identified as
high risk are predominantly areas exhibiting high quantities
of host material. MCE weights (Table 3) reveal that decidu-
ous and coniferous canopy covers play a significant role in
the calculation of the MCE model. Logistic regression exhibits
a similar pattern of apparent dependence on canopy cover
(i.e., host) variables. BPN, however, follows a pattern combin-
ing canopy cover and household movement. Many areas of
disagreement between the models are locations which, dur-
ing the time period of the study, experienced high volumes
of immigration, an important consideration when accounting
for introduction probability. The inability of logistic regres-
sion to characterize household movement data indicates that
BPN provides an improved method for the integration of non-
normal anthropogenic variables when compared to logistic
regression.

The three models identify highly variable quantities of

high-risk areas. BPN predicts the highest quantity of high-risk
areas, followed by MCE and logistic regression respectively.
The MCE model risk quantity and distribution is a product
of expert derived response curves while BPN and logistic
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regression are derived empirically from the same independent
variables. Both empirical models (i.e., BPN, logistic regression)
are influenced more profoundly by household movement than
the MCE model; indicating that household movement is more
important to prediction of gypsy moth distribution than previ-
ously thought by experts and ultimately resulting in lower risk
values in many high migration areas by the MCE model (e.g.,
Fulton County, GA, and Denver County, CO) when compared
to the empirical models. There are, however, significant dif-
ferences between the two empirical models. The BPN model
identifies a greater quantity of high-risk areas than the logis-
tic regression model. This can be explained by the function
used by each of the models: parametric assumptions inherent
to the logistic regression model do not allow it to accurately
characterize the non-linear relationships between several of
the anthropogenic variables and gypsy moth establishment
risk.

Three anthropogenic variables (i.e., migration from
infested locations, road accessibility, and population density)
were used in the calculation of all three models. In all models
anthropogenic variables play a significant role in the calcula-
tion of gypsy moth distribution; indicating that the inclusion
of anthropogenic variables in the calculation of SDMs can
contribute significantly to the accurate and robust prediction
of species distribution.

5. Conclusions

This research compared the accuracy of expert, parametric
and neural network modeling techniques for the integra-
tion of anthropogenic and ecological variables in support of
invasive species risk forecasting. The BPN and MCE algo-
rithms provided comparably accurate predictions (AUC = 0.93
and 0.92, respectively) of gypsy moth infestation, both sig-
nificantly more accurate than logistic regression (AUC = 0.86).
Unlike MCE however, BPN produced a prediction indepen-
dent of expert knowledge. This finding demonstrates that BPN
can elucidate factors contributing to the introduction (i.e.,
predictor–response variable relationships) of invasive species
for which variable relationships are not fully understood. The
integration of anthropogenic variables enabled the production
of an accurate risk-model providing insight into the impact of
anthropogenic activities (e.g., household moves) on the risk
of gypsy moth infestation in the US. For the prediction of
gypsy moth infestation risk, household movement data pro-
vided the single most powerful predictor (variable) of gypsy
moth presence. Further, BPN provided a robust technique
for integrating variables representing anthropogenic interac-
tion and ecological properties that are capable of accurately
predicting pest-risk without a priori understanding of pre-
dictor/response variable relationships. This method can be
applied to develop risk models to inform managers of factors
contributing to the establishment of invasive species (fauna
and flora) in North America and other environments. The
models developed through this research directly inform miti-

gation strategies of APHIS managers.

The integration of anthropogenic variables into species
distribution modeling remains an open avenue for research,
particularly with regard to predictive vegetation modeling.
2 1 0 ( 2 0 0 8 ) 339–350

Many flora are altered or disturbed by anthropogenic activities;
the inclusion of anthropogenic data therefore, has poten-
tial to improve predictions and further understanding of the
relationship between the modeled species and anthropogenic
activities.
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